کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1133004 | 955835 | 2007 | 18 صفحه PDF | دانلود رایگان |

Dynamic origin–destination (OD) estimation and prediction is an essential support function for real-time dynamic traffic assignment model systems for ITS applications. This paper presents a structural state space model to systematically incorporate regular demand pattern information, structural deviations and random fluctuations. By considering demand deviations from the a priori estimate of the regular pattern as a time-varying process with smooth trend, a polynomial trend filter is developed to capture possible structural deviations in real-time demand. Based on a Kalman filtering framework, an optimal adaptive procedure is further proposed to capture day-to-day demand evolution, and update the a priori regular demand pattern estimate using new real-time estimates and observations obtained every day. These models can be naturally integrated into a real-time dynamic traffic assignment system and provide an effective and efficient approach to utilize the real-time traffic data continuously in operational settings. A case study based on the Irvine test bed network is conducted to illustrate the proposed methodology.
Journal: Transportation Research Part B: Methodological - Volume 41, Issue 8, October 2007, Pages 823–840