کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1139584 956681 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a septic Lyapunov system
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a septic Lyapunov system
چکیده انگلیسی

In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of septic polynomial differential systems are investigated. With the help of computer algebra system MATHEMATICA, the first 13 quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The result that there exist 13 small amplitude limit cycles created from the three order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for septic Lyapunov systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 81, Issue 12, August 2011, Pages 2595–2607
نویسندگان
, , ,