کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1139862 956699 2011 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sparsified Randomization algorithms for low rank approximations and applications to integral equations and inhomogeneous random field simulation
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Sparsified Randomization algorithms for low rank approximations and applications to integral equations and inhomogeneous random field simulation
چکیده انگلیسی
Sparsified Randomization Monte Carlo (SRMC) algorithms introduced in our recent paper [60] for solving systems of linear algebraic equations are extended to construct the SVD-based randomized low rank approximations for large matrices. We suggest some efficient implementations of SRMC based on low rank approximations, and give different applications. In particular, an important application we present in this paper is a fast simulation algorithm for a randomized approximation of non-homogeneous random fields based on a discrete version of the Karhunen-Loéve expansion. We present two examples of non-homogeneous random field simulation which include a long-correlated Lorenzian random field and the fractional Wiener process. Another application we deal in this paper concerns the randomized solvers for large linear systems. We suggest a hybrid method which combines SRMC with an algorithm for solving boundary integral equations based on a separation representation of the kernel. This method is illustrated in this paper by solving a 2D boundary integral equation from potential theory governing the Dirichlet problem for the Laplace equation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 82, Issue 2, October 2011, Pages 295-317
نویسندگان
, ,