کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1140147 | 956714 | 2010 | 15 صفحه PDF | دانلود رایگان |

In this paper, we consider the time fractional inverse advection–dispersion problem (TFIADP) in a quarter plane. The solute concentration and dispersion flux are sought from a measured concentration history at a fixed location inside the body. Such problem is obtained from the classical advection–dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α(0 < α < 1). We show that the TFIADP is severely ill-posed and further apply a spectral regularization method to solve it based on the solution given by the Fourier method. Convergence estimates are presented under a priori bound assumptions for the exact solution. Finally, numerical examples are given to show that the proposed numerical method is effective.
Journal: Mathematics and Computers in Simulation - Volume 81, Issue 1, September 2010, Pages 37–51