کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1140511 | 1489436 | 2008 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A two-steps algorithm for approximating real roots of a polynomial in Bernstein basis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The surface/curve intersection problem, through the resultants process results in a high degree (nâ¥100) polynomial equation on [0,1] in the Bernstein basis. The knowledge of multiplicities of the roots is critical for the topological coherence of the results. In this aim, we propose an original two-steps algorithm based on successive differentiations which separates any root (even multiple) and guarantees that the assumptions of Newton global convergence theorem are satisfied. The complexity is Ï(n4) but the algorithm can easily be parallelized. Experimental results show its efficiency when facing ill-conditioned polynomials.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 77, Issues 2â3, 7 March 2008, Pages 313-323
Journal: Mathematics and Computers in Simulation - Volume 77, Issues 2â3, 7 March 2008, Pages 313-323
نویسندگان
Ahmed Zidna, Dominique Michel,