کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1141280 | 956778 | 2008 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Constructing neural network sediment estimation models using a data-driven algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Artificial neural network (ANN) models are designed for suspended sediment estimation using statistical pre-processing of the data. Statistical properties such as cross-, auto- and partial auto-correlation of the data series are used for identifying a unique input vector to the ANN that best represents the sediment estimation process for a basin. The methodology is evaluated using the flow and sediment data from the stations Quebrada Blanca and Rio Valenciano in USA. The result of the study indicates that the statistical pre-processing of the data could significantly reduce the effort and computational time required in developing an ANN model. Three ANN training algorithms are also compared with each other for the selected input vector.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 79, Issue 1, October 2008, Pages 94–103
Journal: Mathematics and Computers in Simulation - Volume 79, Issue 1, October 2008, Pages 94–103
نویسندگان
Özgür Kisi,