کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1144479 957415 2007 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecasting Approach for Short-term Traffic Flow based on Principal Component Analysis and Combined Neural Network
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Forecasting Approach for Short-term Traffic Flow based on Principal Component Analysis and Combined Neural Network
چکیده انگلیسی

A combination approach based on Principal Component Analysis (PCA) and Combined Neural Network (CNN) is presented for short-term traffic flow forecasting. The historical data of the forecasted traffic volume and interrelated volumes have been processed by PCA. The results of PCA form the input data for CNN. It not only reduces the dimension of input variables and the size of CNN, but also reserves the main information of the original variables and eliminates relativity among them. An example for explanation of validity is given. The forecast results show that this approach is better than the typical Error Back-Propagation neural network (BP NN) with the same data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Systems Engineering - Theory & Practice - Volume 27, Issue 8, August 2007, Pages 167-171