کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1151147 958195 2006 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian estimation and the application of long memory stochastic volatility models
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Bayesian estimation and the application of long memory stochastic volatility models
چکیده انگلیسی

A new sampling-based Bayesian approach to the long memory stochastic volatility (LMSV) process is presented; the method is motivated by the GPH-estimator in fractionally integrated autoregressive moving average (ARFIMA) processes, which was originally proposed by J. Geweke and S. Porter-Hudak [The estimation and application of long memory time series models, Journal of Time Series Analysis, 4 (1983) 221–238]. In this work, we perform an estimation of the memory parameter in the Bayesian framework; an estimator is obtained by maximizing the posterior density of the memory parameter. Finally, we compare the GPH-estimator and the Bayes-estimator by means of a simulation study and our new approach is illustrated using several stock market indices; the new estimator is proved to be relatively stable for the various choices of frequencies used in the regression.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistical Methodology - Volume 3, Issue 4, October 2006, Pages 483–489
نویسندگان
, , ,