کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1151147 | 958195 | 2006 | 7 صفحه PDF | دانلود رایگان |

A new sampling-based Bayesian approach to the long memory stochastic volatility (LMSV) process is presented; the method is motivated by the GPH-estimator in fractionally integrated autoregressive moving average (ARFIMA) processes, which was originally proposed by J. Geweke and S. Porter-Hudak [The estimation and application of long memory time series models, Journal of Time Series Analysis, 4 (1983) 221–238]. In this work, we perform an estimation of the memory parameter in the Bayesian framework; an estimator is obtained by maximizing the posterior density of the memory parameter. Finally, we compare the GPH-estimator and the Bayes-estimator by means of a simulation study and our new approach is illustrated using several stock market indices; the new estimator is proved to be relatively stable for the various choices of frequencies used in the regression.
Journal: Statistical Methodology - Volume 3, Issue 4, October 2006, Pages 483–489