کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1151170 | 958198 | 2007 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A nonparametric plug-in rule for selecting optimal block lengths for block bootstrap methods
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we consider the problem of empirical choice of optimal block sizes for block bootstrap estimation of population parameters. We suggest a nonparametric plug-in principle that can be used for estimating ‘mean squared error’-optimal smoothing parameters in general curve estimation problems, and establish its validity for estimating optimal block sizes in various block bootstrap estimation problems. A key feature of the proposed plug-in rule is that it can be applied without explicit analytical expressions for the constants that appear in the leading terms of the optimal block lengths. Furthermore, we also discuss the computational efficacy of the method and explore its finite sample properties through a simulation study.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistical Methodology - Volume 4, Issue 3, July 2007, Pages 292–321
Journal: Statistical Methodology - Volume 4, Issue 3, July 2007, Pages 292–321
نویسندگان
S.N. Lahiri, K. Furukawa, Y.-D. Lee,