کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1151200 1489830 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonparametric Bayesian models for a spatial covariance
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Nonparametric Bayesian models for a spatial covariance
چکیده انگلیسی

A crucial step in the analysis of spatial data is to estimate the spatial correlation function that determines the relationship between a spatial process at two locations. The standard approach to selecting the appropriate correlation function is to use prior knowledge or exploratory analysis, such as a variogram analysis, to select the correct parametric correlation function. Rather that selecting a particular parametric correlation function, we treat the covariance function as an unknown function to be estimated from the data. We propose a flexible prior for the correlation function to provide robustness to the choice of correlation function. We specify the prior for the correlation function using spectral methods and the Dirichlet process prior, which is a common prior for an unknown distribution function. Our model does not require Gaussian data or spatial locations on a regular grid. The approach is demonstrated using a simulation study as well as an analysis of California air pollution data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistical Methodology - Volume 9, Issues 1–2, January–March 2012, Pages 265–274
نویسندگان
, ,