کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1151210 | 958201 | 2006 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
MAOSA: A new procedure for detection of differential gene expression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Gene expression data analysis provides scientists with a wealth of information about gene relationships, particularly the identification of significantly differentially expressed genes. However, there is no consensus on the analysis technique that will solve the inherent multiplicity problem (thousands of genes to be tested) and yield a reasonable and statistically justifiable number of differentially expressed genes. We propose the Multiplicity-Adjusted Order Statistics Analysis (MAOSA) to identify differentially expressed genes while adjusting for the multiple testing. The multiplicity problem will be eased by performing a Bonferroni correction on a small number of effects, since the majority of genes are not differentially expressed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistical Methodology - Volume 3, Issue 1, January 2006, Pages 42–54
Journal: Statistical Methodology - Volume 3, Issue 1, January 2006, Pages 42–54
نویسندگان
Greg Dyson, C.F. Jeff Wu,