کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1151999 958266 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A robust multivariate measurement error model with skew-normal/independent distributions and Bayesian MCMC implementation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
A robust multivariate measurement error model with skew-normal/independent distributions and Bayesian MCMC implementation
چکیده انگلیسی

Skew-normal/independent distributions are a class of asymmetric thick-tailed distributions that include the skew-normal distribution as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in multivariate measurement errors models. We propose the use of skew-normal/independent distributions to model the unobserved value of the covariates (latent variable) and symmetric normal/independent distributions for the random errors term, providing an appealing robust alternative to the usual symmetric process in multivariate measurement errors models. Among the distributions that belong to this class of distributions, we examine univariate and multivariate versions of the skew-normal, skew-tt, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistical Methodology - Volume 6, Issue 5, September 2009, Pages 527–541
نویسندگان
, , , ,