کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1152414 958283 2007 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonparametric binary regression using a Gaussian process prior
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Nonparametric binary regression using a Gaussian process prior
چکیده انگلیسی

The article describes a nonparametric Bayesian approach to estimating the regression function for binary response data measured with multiple covariates. A multiparameter Gaussian process, after some transformation, is used as a prior on the regression function. Such a prior does not require any assumptions like monotonicity or additivity of the covariate effects. However, additivity, if desired, may be imposed through the selection of appropriate parameters of the prior. By introducing some latent variables, the conditional distributions in the posterior may be shown to be conjugate, and thus an efficient Gibbs sampler to compute the posterior distribution may be developed. A hierarchical scheme to construct a prior around a parametric family is described. A robustification technique to protect the resulting Bayes estimator against miscoded observations is also designed. A detailed simulation study is conducted to investigate the performance of the proposed methods. We also analyze some real data using the methods developed in this article.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistical Methodology - Volume 4, Issue 2, April 2007, Pages 227–243
نویسندگان
, , ,