کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1153779 958352 2009 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A likelihood based estimator for vector autoregressive processes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
A likelihood based estimator for vector autoregressive processes
چکیده انگلیسی

A onestep estimator, which is an approximation to the unconditional maximum likelihood estimator (MLE) of the coefficient matrices of a Gaussian vector autoregressive process is presented. The onestep estimator is easy to compute and can be computed using standard software. Unlike the computation of the unconditional MLE, the computation of the onestep estimator does not require any iterative optimization and the computation is numerically stable. In finite samples the onestep estimator generally has smaller mean square error than the ordinary least squares estimator. In a simple model, where the unconditional MLE can be computed, numerical investigation shows that the onestep estimator is slightly worse than the unconditional MLE in terms of mean square error but superior to the ordinary least squares estimator. The limiting distribution of the onestep estimator for processes with some unit roots is derived.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistical Methodology - Volume 6, Issue 3, May 2009, Pages 304–319
نویسندگان
, , ,