کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1251148 970890 2007 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Application of Near Infrared Diffuse Reflectance Spectroscopy with Radial Basis Function Neural Network to Determination of Rifampincin Isoniazid and Pyrazinamide Tablets
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Application of Near Infrared Diffuse Reflectance Spectroscopy with Radial Basis Function Neural Network to Determination of Rifampincin Isoniazid and Pyrazinamide Tablets
چکیده انگلیسی
Partial least squares (PLS), back-propagation neural network (BPNN) and radial basis function neural network (RBFNN) were respectively used for estalishing quantative analysis models with near infrared (NIR) diffuse reflectance spectra for determining the contents of rifampincin (RMP), isoniazid (INH) and pyrazinamide (PZA) in rifampicin isoniazid and pyrazinamide tablets. Savitzky-Golay smoothing, first derivative, second derivative, fast Fourier transform (FFT) and standard normal variate (SNV) transformation methods were applied to pretreating raw NIR diffuse reflectance spectra. The raw and pretreated spectra were divided into several regions, depending on the average spectrum and RSD spectrum. Principal component analysis (PCA) method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data. The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation (RMSECV) values which were obtained by leave-one-out cross-validation method. The RMSECV values of the RBFNN models for determining the contents of RMP, INH and PZA were 0.00288, 0.00226 and 0.00341, respectively. Using these models for predicting the contents of INH, RMP and PZA in prediction set, the RMSEP values were 0.00266, 0.00227 and 0.00411, respectively. These results are better than those obtained from PLS models and BPNN models. With additional advantages of fast calculation speed and less dependence on the initial conditions, RBFNN is a suitable tool to model complex systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Research in Chinese Universities - Volume 23, Issue 5, September 2007, Pages 518-523
نویسندگان
, , , , , , , ,