کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1265411 | 972217 | 2012 | 10 صفحه PDF | دانلود رایگان |

Sonocatalytic degradation of various organic dyes (Congo Red, Reactive Blue 4, Methyl Orange, Rhodamine B and Methylene Blue) catalyzed by powder and nanotubes TiO2 was studied. Both catalysts were characterized using transmission electron microscope (TEM), surface analyzer, Raman spectroscope and thermal gravimetric analyzer (TGA). Sonocatalytic activity of powder and nanotubes TiO2 was elucidated based on the degradation of various organic dyes. The former catalyst was favorable for treatment of anionic dyes, while the latter was more beneficial for cationic dyes. Sonocatalytic activity of TiO2 nanotubes could be up to four times as compared to TiO2 powder under an ultrasonic power of 100 W and a frequency of 42 kHz. This was associated with the higher surface area and the electrostatic attraction between dye molecules and TiO2 nanotubes. Fourier transform-infrared spectrometer (FT-IR) was used to identify changes that occurred on the functional group in Rhodamine B molecules and TiO2 nanotubes after the reaction. Sonocatalytic degradation of Rhodamine B by TiO2 nanotubes apparently followed the Langmuir–Hinshelwood adsorption kinetic model with surface reaction rate of 1.75 mg/L min. TiO2 nanotubes were proven for their high potential to be applied in sonocatalytic degradation of organic dyes.
► Ultrasonic-assisted degradation of dyes by powder and nanotube TiO2.
► Elucidation of sonocatalytic behavior based on catalyst’s properties.
► Comparison of process behaviors in degradation of various organic dyes.
► Powder and nanotube TiO2 were beneficial to treat anionic and cationic dyes.
► The process followed Langmuir–Hinshelwood adsorption kinetic model.
Journal: Ultrasonics Sonochemistry - Volume 19, Issue 3, May 2012, Pages 642–651