کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1266534 1496876 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption
ترجمه فارسی عنوان
مدلسازی دینامیک حباب و سینتیک رادیکال در اختلال سلول های میکروالگل باعث التهاب می شود
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی (عمومی)
چکیده انگلیسی


• A method for predicting ultrasound induced microalgal cell disruption was developed.
• The method relied on the validated bubble dynamics and radical kinetics models.
• Cumulative collapse pressure from simulation was effective to reflect microalgal cell disruption.
• The models can be used to optimize ultrasound induced microalgal cell disruption.

Microalgal cell disruption induced by acoustic cavitation was simulated through solving the bubble dynamics in an acoustical field and their radial kinetics (chemical kinetics of radical species) occurring in the bubble during its oscillation, as well as calculating the bubble wall pressure at the collapse point. Modeling results indicated that increasing ultrasonic intensity led to a substantial increase in the number of bubbles formed during acoustic cavitation, however, the pressure generated when the bubbles collapsed decreased. Therefore, cumulative collapse pressure (CCP) of bubbles was used to quantify acoustic disruption of a freshwater alga, Scenedesmus dimorphus, and a marine alga, Nannochloropsis oculata and compare with experimental results. The strong correlations between CCP and the intracellular lipid fluorescence density, chlorophyll-a fluorescence density, and cell particle/debris concentration were found, which suggests that the developed models could accurately predict acoustic cell disruption, and can be utilized in the scale up and optimization of the process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultrasonics Sonochemistry - Volume 28, January 2016, Pages 7–14
نویسندگان
, ,