کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1315368 976022 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Amplification of chirality as a pathway to biological homochirality
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی معدنی
پیش نمایش صفحه اول مقاله
Amplification of chirality as a pathway to biological homochirality
چکیده انگلیسی

Amplification of enantiomeric enrichment is a key feature for the chemical evolution of biological homochirality from the origin of chirality. The aggregations of the enantiomers by diastereomeric interactions enable the modification of their enantiomeric excess during some chemical processes. Fluorine-containing chiral compounds possess large amplification effect via distillation, sublimation and achiral chromatography by self-disproportionation. Asymmetric amplifications in enantioselective catalysis occur by the differential formation and reactivity between homochiral and heterochiral aggregate in solution.We described the amplification of ee in asymmetric autocatalysis of 5-pyrimidyl alkanol in the reaction between diisopropylzinc and pyrimidine-5-carbaldehdye. During the reactions extremely low ee (ca. 0.00005% ee) can be amplified to achieve more than 99.5% ee. Since the proposed origins of chirality such as CPL, quartz, chiral organic crystals of achiral compounds and statistical fluctuation of ee can initiate the asymmetric autocatalysis with amplification of ee, the proposed origin of chirality can be linked with enantiopure organic compound in conjunction with amplification of ee by asymmetric autocatalysis. In addition, we described that the carbon isotopically chiral compound triggers the asymmetric autocatalysis of 5-pyrimiodyl alkanol to afford the enantioenriched product with the absolute configuration correlated with that of carbon isotope chirality, that is, isotope chirality including hydrogen isotopes can control the enantioselectivity of asymmetric addition of alkyl metal reagent to aldehyde.

Amplification of enantiomeric purity is key feature for the chemical evolution of biological homochirality. The diastereomeric interaction enables the modification of enantiomeric excess during some chemical processes. In asymmetric autocatalysis of 5-pyrimidyl alkanol, extremely low ee can be amplified to achieve almost enantiomerically pure chiral organic compound.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Fluorine Chemistry - Volume 131, Issue 4, April 2010, Pages 525–534
نویسندگان
, ,