کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
13418514 1841454 2020 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Framework for emulation and uncertainty quantification of a stochastic building performance simulator
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Framework for emulation and uncertainty quantification of a stochastic building performance simulator
چکیده انگلیسی
A good framework for the quantification and decomposition of uncertainties in dynamic building performance simulation should: (i) simulate the principle deterministic processes influencing heat flows and the stochastic perturbations to them, (ii) quantify and decompose the total uncertainty into its respective sources, and the interactions between them, and (iii) achieve this in a computationally efficient manner. In this paper we introduce a new framework which, for the first time, does just that. We present the detailed development of this framework for emulating the mean and the variance in the response of a stochastic building performance simulator (EnergyPlus co-simulated with a multi agent stochastic simulator called No-MASS), for heating and cooling load predictions. We demonstrate and evaluate the effectiveness of these emulators, applied to a monozone office building. With a range of 25-50 kWh/m2, the epistemic uncertainty due to envelope parameters dominates over aleatory uncertainty relating to occupants' interactions, which ranges from 6-8 kWh/m2, for heating loads. The converse is observed for cooling loads, which vary by just 3 kWh/m2 for envelope parameters, compared with 8-22 kWh/m2 for their aleatory counterparts. This is due to the larger stimuli provoking occupants' interactions. Sensitivity indices corroborate this result, with wall insulation thickness (0.97) and occupants' behaviours (0.83) having the highest impacts on heating and cooling load predictions respectively. This new emulator framework (including training and subsequent deployment) achieves a factor of c.30 reduction in the total computational budget, whilst overwhelmingly maintaining predictions within a 95% confidence interval, and successfully decomposing prediction uncertainties.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Energy - Volume 258, 15 January 2020, 113759
نویسندگان
, , , ,