کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
13434572 1842859 2019 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Flood Forecasting with Machine Learning Technique on Hydrological Modeling
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Flood Forecasting with Machine Learning Technique on Hydrological Modeling
چکیده انگلیسی
Urban flooding is a major problem in Thailand. An essential countermeasure towards better flooding management is to forecast flood water levels in the real-time manner. Most existing early warning systems (EWS) in Thailand contain a lot of miscalculations when they face with real situations. Towards prediction improvement, this paper presents hydrological modeling augmented with alternative five machine learning techniques; linear regression, neural network regression, Bayesian linear regression and boosted decision tree regression. As the testbed system, the so-called MIKE-11 hydrologic forecasting model, developed by Danish Hydraulic Institute (DHI), Denmark, is used. To test error reduction in runoff forecasting, the water-level records during 2012-2016 data are used for training and the derived model is tested on the record of 2017, in the experiments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 156, 2019, Pages 377-386
نویسندگان
, ,