کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
13449681 | 1843896 | 2020 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Segmentation of sonar images with intensity inhomogeneity based on improved MRF
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Sonar is one of the most important tools for underwater object detection and submarine topography reconstruction. To classify sonar images automatically and accurately is essential for the navigation and path planning of autonomous underwater vehicles (AUV). However, for the intensity inhomogeneity and speckle noise in sonar images, it is difficult to obtain segmentation results of high accurate rate. To address these issues, in this paper, we advocate a segmentation method incorporating simple linear iterative clustering (SLIC) and adaptive intensity constraint into Markov random field (MRF), to segment sonar images with intensity inhomogeneity into the object highlight, the object shadow and the background areas. The main procedures of the proposed work are as follows: first, SLIC is used to separate sonar images into homogeneous super pixels, and second the homogeneity patches, with a novel intensity constraint strategy, is utilized to optimize the segmentation result of MRF at each iteration. Experimental results reveal that the proposed method performs well and fast on real sonar images which have intensity inhomogeneity problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Acoustics - Volume 158, 15 January 2020, 107051
Journal: Applied Acoustics - Volume 158, 15 January 2020, 107051
نویسندگان
Yan Song, Peng Liu,