کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1392820 | 1501161 | 2012 | 9 صفحه PDF | دانلود رایگان |

The chemometric protocol VLAK was applied to predict improvement of the biological activity of pyrrolo-pyrimidine derivatives as anticancer agents, by using the NCI ACAM Database as depository of antitumor drugs with a known mechanism of action. Among the selected compounds two of these showed a good increase in the antitumor activity. These new pyrrolo-pyrimidine compounds were demonstrated effective against the full panels of NCI DTP tumour human cell lines. The derivative 8-[3-(piperidino)propyl]-4,10-dimethyl-9-phenyl-6-(methylsulfanyl)-3,4-dihydropyrimido[1,2-c]pyrrolo[3,2-e]pyrimidin-2(8H)-one reveled efficacious against the leukemia subpanel, in particular the RPMI cell line resulted the most sensitive (pGI50 = 6.68). Moreover the derivative 7-(3-Chloropropyl)-9-methyl-5-(methylsulfanyl)-8-phenyl-3H-imidazo[1,2-c]pyrrolo[3,2-e]pyrimidin-2(7H)-one showed a good antitumor activity against the leukemia subpanel with a low cytotoxic activity, above all against the HCT11 human tumour cell line.The VLAK protocol revealed a good method to design new molecules with good antitumor activity, starting from low active compounds. Moreover this protocol focused on the pyrrolo-pyrimidine derivatives as useful starting point for further development to obtain more potent antitumor agents.
Figure optionsDownload as PowerPoint slideHighlights
► Lead optimization was performed through the Virtual Lock-and-Key (VLAK) protocol.
► The VLAK was applied in the design of pyrrolo-pyrimidines as anticancer agents.
► The NCI ACAM Database was used as database in the VLAK.
► A good improve of antitumor activity for new pyrrolo-pyrimidines was achieved.
► The VLAK revealed a good method to design new compounds with antitumor activity.
Journal: European Journal of Medicinal Chemistry - Volume 55, September 2012, Pages 375–383