کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1393090 1501182 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Investigating the structural basis of arylamides to improve potency against M. tuberculosis strain through molecular dynamics simulations
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Investigating the structural basis of arylamides to improve potency against M. tuberculosis strain through molecular dynamics simulations
چکیده انگلیسی

Arylamides have been identified as direct InhA inhibitors which overcome the drug-resistance problem of isoniazid, the first-line drug for tuberculosis treatment. However, arylamide properties are not yet optimal against Mycobacterium tuberculosis. Arylamides show high potency in InhA enzyme assay, but they fail in antimycobacterial assay. To achieve the structural basis to improve antimycobacterial activity, the dynamic behavior of arylamide inhibitors and a substrate, trans-2-hexadecenoyl-(N-acetylcysteamine)-thioester, were carried out by molecular dynamics (MD) simulations. Arylamide inhibitors and a substrate are positioned at the same site which indicates the competitive inhibitor function of arylamides. Based on our findings, the amide carbonyl oxygen causes the selectivity of arylamide inhibitors for InhA inhibition. Moreover, this moiety is crucial for the affinity of the arylamide–InhA interactions with Tyr158 and NADH to form hydrogen bonds. It is possible to enhance the selectivity of arylamide inhibitors to reach the InhA target by introducing a hydrophilic substituent into the aryl ring A. In order to increase the membrane permeability of arylamide inhibitors, more lipophilic properties should be incorporated into the substituent B. Therefore, based on the obtained results, the correct balance between the selectivity and the membrane permeability of arylamide inhibitors should improve their inhibitory activity against M. tuberculosis strain.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Medicinal Chemistry - Volume 45, Issue 12, December 2010, Pages 5585–5593
نویسندگان
, , , , , ,