کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1455959 | 1509736 | 2016 | 13 صفحه PDF | دانلود رایگان |
A better understanding of silica dissolution–precipitation reactions at high pH aqueous solutions allows for promotion of favorable (e.g., pozzolanic) reactions and mitigation of deleterious (e.g., alkali-silica) reactions in concrete. In this paper, the kinetics and products of silica glass dissolution are studied as a function of solution pH, temperature, and availability of calcium. It was observed that dissolution rate versus time increases linearly with pH and reaches a maximum at pH = 14, with slower dissolution at higher alkalinities. In solutions with similarly high pH, but saturated with portlandite, glass dissolution is significantly slower. This is due to formation of a dense, low porosity, and strongly bonded C–S–H layer on the surface of glass, which serves as a barrier against diffusion of OH− and alkali ions towards the substrate glass. This protective layer forms only when Ca is abundant and portlandite saturation can be maintained on a local scale.
Journal: Cement and Concrete Research - Volume 87, September 2016, Pages 1–13