کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1509170 | 1511152 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Discovering Knowledge from a Residential Building Stock through Data Mining Analysis for Engineering Sustainability
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a dataset of 92,906 dwellings was analysed adopting data mining techniques for the classification of heating and domestic hot water primary energy demand and for the evaluation of the most influencing factors. The sample was classified in three energy demand categorical variables (Low, Medium, High) considering different geometrical and physical attributes. The output of the model made it possible to set reference threshold values among the physical variables. Moreover, high energy demand dwellings were analysed in depth using a k-means algorithm in order to evaluate the design variables which need to be considered in a refurbishment process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Procedia - Volume 83, December 2015, Pages 370-379
Journal: Energy Procedia - Volume 83, December 2015, Pages 370-379