کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1509245 1511154 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Validation of Neural Network-based Fault Diagnosis for Multi-stack Fuel Cell Systems: Stack Voltage Deviation Detection
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
Validation of Neural Network-based Fault Diagnosis for Multi-stack Fuel Cell Systems: Stack Voltage Deviation Detection
چکیده انگلیسی

This paper presents (i) an algorithm for the detection of unexpected stack voltage deviations in an Solid Oxide Fuel Cells (SOFC)-based power system with multiple stacks and (ii) its validation in a simulated online environment. The algorithm is based on recurrent neural networks (RNNs) and is validated by using operating data from the Wärtsilä WFC20 multi-stack SOFC system. The voltage deviation detection is based on statistical testing. Instead of a hardware implementation in the actual power plant, the algorithm is validated in a simulated online environment that provides data I/O communication based on the OPC (i.e. Object Linking and Embedding (OLE) for Process Control) protocol, which is also the technology utilized in the real hardware environment. The validation tests show that the RNN-based algorithm effectively detects unwanted stack voltage deviations and also that it is online-viable.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Procedia - Volume 81, December 2015, Pages 173-181