کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1510409 1511167 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydrogen Absorption Capacity of Fe-Ti-Al Alloy Prepared by High Energy Ball Milling
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
Hydrogen Absorption Capacity of Fe-Ti-Al Alloy Prepared by High Energy Ball Milling
چکیده انگلیسی

Hydrogen as an energy source is a promising solution for the future energy problems. From the economic standpoint, the largest obstacle in using the hydrogen is the effective and safe storage equipment. Up to now, there is no hydrogen storage which has a satisfying performance in both capacity and thermodynamics properties. Fe-Ti alloy is promising hydrogen storage because it absorbs hydrogen in room temperature. Unfortunately, its hydrogen absorption capacity is very low (1-1.9 wt %). Aluminum is known as one among the light metals that can be promoted as a substituting agent that can improve the surface area which interact with hydrogen. Alloying aluminum with Fe-Ti alloy is suggested to enhance the hydrogen absorption capacity. The synthesis and characterization of Fe-Ti-Al alloy with the atomic ratio of 10:10:1 prepared by mechanical alloying technique and its hydrogen absorption properties has been performed. The Fe-Ti-Al elemental powders were milled together in toluene solution using a high energy ball milling for 30 hours. The milled specimen is analyzed with an X-Ray Diffractometer and analyzed qualitatively and quantitatively using Rietveld method developed by Fuji Izumi. On hydriding at room temperature using low pressured Sievert Type Apparatus, Fe10Ti10Al transformed into FeTiH2 and TiH2. It is exhibited that Fe10Ti10Al hydride specimen contains almost 2.5 wt% hydrogen. This is an improvement from Fe-Ti-Mg alloy by Suwarno (2011) which contains 1.75 wt.% hydrogen. Consider the high hydrogen absorption capacity and the low hydriding temperature of this alloy, Fe10Ti10Al alloy could be promoted as new hydrogen storage materials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Procedia - Volume 68, April 2015, Pages 318-325