کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1510583 | 1511165 | 2015 | 9 صفحه PDF | دانلود رایگان |
Currently the use of solar energy for heating and cooling isn’t widespread. In order to reduce primary energy consumption in the built environment along with improving the thermal performance of the current building stock, retrofit solutions are required to utilise renewable energy. Using solar energy to reduce primary energy consumption is seen as a possible solution. With the precipitous fall in the prices of crystalline solar photovoltaic modules, utilising this technology to reduce electrical energy consumption for cooling is an attractive solution. Recently, a sorption module integrated collector has been developed in order to improve cost-effectiveness and simplify solar thermal heating and cooling systems. A techno-economic analysis has been performed to evaluate solar photovoltaic cooling and solar thermal cooling systems for residential renewable energy retrofit. The analysis is based on potential energy and cost savings according to simulated heating and cooling loads under climatic conditions of Madrid, Spain. Simplified models were used to determine heating and cooling demands and the solar energy contribution to heating and cooling loads. Additionally, given the sorption collector's unique capacity to store solar energy thermally and provide cooling at night an analysis has been carried out to identify the combined benefit of solar-assisted heating and cooling via photovoltaics during the day and solar sorption at night. For system sizes between 5m2 and 20m2 solar fractions between 16% and 64% could be achieved which translated to annual energy cost savings between €153 to €615.
Journal: Energy Procedia - Volume 70, May 2015, Pages 409-417