کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1512611 | 1511197 | 2013 | 7 صفحه PDF | دانلود رایگان |

Nanowires (NWs) solar cells are expected to outperform the thin-film counterparts in terms of optical absorptance. In this theoretical study we optimize the geometry of vertical crystalline-amorphous silicon core-shell NW arrays on doped ZnO:Al (AZO)-Glass substrate by means of 3-D optical simulations in order to maximize the photon absorption. The optimized geometry is investigated by means of 3-D TCAD numerical simulation in order to calculate the ultimate efficiency and the main figures of merit by taking into account recombination losses. We show that optimized 10 μm-long crystalline – amorphous silicon core-shell (c-Si/a-Si/AZO/Glass) NWs can reach photo-generated current up to 22.94 mA/cm2 (above 45% larger than that of the planar counterpart with the same amount of absorbing material) and conversion efficiency of 13.95%.
Journal: Energy Procedia - Volume 38, 2013, Pages 216-222