کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1514354 1511221 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transformer Fault Dignosis Based on Feature Selection and Parameter Optimization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
Transformer Fault Dignosis Based on Feature Selection and Parameter Optimization
چکیده انگلیسی

Failure of transformer is very complex, dissolved Gas in Oil Analysis (DGA) is presently the easier and simpler way for fault diagnosis of oil-immersed transformers.The correct selection of features of dissolved gas data can improve efficiency of transformer fault diagnosis. SVM is more effective than traditional methematic model to discribe the type of fault of transformer.As for the problem of difficulty of determining parameters in SVM applications, genetic algorithm (GA) was used to select SVM parameters. The test results show that this GA-SVM model is effective to detect failure of transformer.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Procedia - Volume 12, 2011, Pages 662-668