کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1514935 | 1511226 | 2011 | 5 صفحه PDF | دانلود رایگان |

Dilute Chemical Decontamination (DCD) process has been used in several full system and components of nuclear coolant systems to effectively remove the radioactive contaminants that causes radiation field and consequent MANREM problem. The DCD process uses chemicals in very low concentrations (millimolar) and dissolves the oxide film along with the activity incorporated in the oxide film. In DCD process operated under the regenerative mode, the chemical formulation spent in the process of oxide dissolution is replenished by passing through cation exchange columns. Finally, after achieving sufficient decontamination of the system/component, the added decontamination chemicals along with the activities and metal ions released during the process are removed by mixed bed ion exchange columns and the system is restored to normal operating condition in a few days time. In PHWRs, the regenerative DCD process is applied for full primary coolant system decontamination. The chemicals are added directly to the heavy water coolant with the fuel in the core. In Indian PHWRs (MAPS#1&2, RAPS#1&2, NAPS#1&2 and KAPS#1), the process has been applied eleven times. A chemical formulation based on NTA, Citric acid and Ascorbic acid has been applied seven times with good results. Decontamination factors in the range 2-30 have been obtained in different components with good MANREM savings in the subsequent maintenance works.Efforts are on to modify the process to take care of the challenges posed by antimony isotopes. An inhibitor (Rodine-92B) based process was successfully tested in NAPS#2 for removing antimony isotopes (122Sb and 124Sb). Further refining of the antimony removal process is being worked out. Similarly, the process is being modified to effectively remove the hotspot causing stellite particles in the moderator system of PHWRs. A permanganate based process has been developed and tested in several adjustor rod drive mechanisms in KAPS and NAPS. The experience of applying/testing the DCD process in the Indian nuclear reactors is described in this paper.
Journal: Energy Procedia - Volume 7, 2011, Pages 645-649