کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
154476 456841 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An effective computation strategy for assessing operational flexibility of high-dimensional systems with complicated feasible regions
ترجمه فارسی عنوان
یک استراتژی محاسباتی موثر برای ارزیابی انعطاف پذیری عملیاتی سیستم های با ابعاد بزرگ با مناطق پیچیده امکان پذیر است
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


• A new approach is proposed to accurately evaluate the volumetric flexibility index.
• The feasible region can be nonconvex, disjoint or non-simply connected in high-dimensional space.
• Random line search provides representative characterization of domain boundaries.
• No prior information of geometric properties is required in the proposed approach.
• Extensive case studies with 2–7 uncertain parameters are provided.

The volumetric flexibility index  (FIv)(FIv) of a chemical system can be viewed geometrically as the ratio between the hypervolume of feasible region and that of a hypercube bounded by the expected upper and lower limits of uncertain process parameters. Although several methods have already been developed to compute FIvFIv, none of them are effective for solving the high-dimensional problems defined in nonconvex, non-simply connected or disconnected regions. While the available shortcut approaches are not accurate enough, successful tuning of the algorithmic parameters is mandatory for producing credible estimates with the more elaborate existing strategies.The above practical issues in volume estimation are thoroughly addressed in the present research. The most critical step in the proposed procedure is to characterize the feasible region accurately. To this end, the domain boundaries in parameter space are first identified with the feasible proximity points obtained by following a random line search algorithm. The Delaunay triangulation technique is then implemented to generate simplexes on the basis of such near-boundary points. By checking the centroids of these simplexes, the infeasible ones may be identified and eliminated. Finally, the hypervolumes of all feasible simplexes are summed to determine the volumetric flexibility index.Extensive case studies with 2–7 uncertain parameters have been carried out to show the superior capabilities of the proposed computation strategies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Science - Volume 147, 22 June 2016, Pages 137–149
نویسندگان
, , ,