کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
156205 | 456925 | 2011 | 12 صفحه PDF | دانلود رایگان |

An experimental study of steady-state selective catalytic reduction (SCR) of NOx with NH3 on both Fe-ZSM-5 and Cu-ZSM-5 monolithic catalysts was carried out to investigate the extent of mass transfer limitations in various SCR reactions. Catalysts with different washcoat loadings, washcoat thicknesses and lengths were synthesized for this purpose. SCR system reactions examined included NO oxidation, NH3 oxidation, standard SCR, fast SCR and NO2 SCR. Comparisons of conversions obtained on catalysts with the same washcoat volumes but different washcoat thicknesses indicated the presence of washcoat diffusion limitations. NH3 oxidation, an important side reaction in SCR system, showed the presence of washcoat diffusion limitations starting at 350 °C on Fe-zeolite and 300 °C on Cu-zeolite catalysts. Washcoat diffusion limitations were observed for the standard SCR reaction (NH3+NO+O2) on both Fe-zeolite (≥350 °C) and Cu-zeolite (≥250 °C). For the fast (NH3+NO+NO2) and NO2 SCR (NH3+NO2) reactions, diffusion limitations were observed throughout the temperature range explored (200–550 °C). The experimental findings are corroborated by theoretical analyses. Even though the experimentally observed differences in conversions clearly indicate the presence of washcoat diffusion limitations, the contribution of external mass transfer was also found to be important under certain conditions. The transition temperatures for shifts in controlling regimes from kinetic to washcoat diffusion to external mass transfer are determined using simplified kinetics. The findings indicate the necessity of inclusion of mass transfer limitations in SCR modeling, catalyst design and optimization.
Figure optionsDownload high-quality image (123 K)Download as PowerPoint slideHighlights
► Selective catalytic reduction (SCR) of NOx on Cu and Fe-ZSM-5 catalysts is studied.
► NO and NH3 oxidation, standard, fast and NO2 SCR reactions are studied.
► Experimental data show clearly the presence of washcoat diffusion.
► The experimental data is corroborated by theoretical analysis.
Journal: Chemical Engineering Science - Volume 66, Issue 21, 1 November 2011, Pages 5192–5203