کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
156529 | 456936 | 2011 | 13 صفحه PDF | دانلود رایگان |

Granular solids in silos experience considerable principal stress rotations, which result in the non-coaxiality between principal stresses and plastic strain rates. This paper discusses the influences of the use of elastoplastic non-coaxial models for granular solids on predictions of wall pressure distributions in silos by using the finite element method. A well established non-coaxial model in geomechanics, the yield vertex model, is employed. Simulations are performed on a steep hopper characterized with a mass flow and a flat-bottomed silo with a semi-mass flow. The simulations indicate that the non-coaxiality does not influence predictions of wall pressures after filling. On the other hand, the predicted discharge wall pressures with non-coaxial considerations are larger than those without it. Its mechanism is discussed in this paper. The suppressed shear-dilatancy of granular solids in silos leads to a larger increase of normal stress with non-coaxial models.
Journal: Chemical Engineering Science - Volume 66, Issue 8, 15 April 2011, Pages 1715–1727