کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
157294 | 456968 | 2009 | 9 صفحه PDF | دانلود رایگان |

In this work, a two-scale two-phase modeling methodology is presented for studying fluid release from saturated/unsaturated thin fibrous media when brought in contact with a moving solid surface. Our macroscale model is based on the Richards’ equation for two-phase fluid transport in porous media. The required constitutive relationships, capillary pressure and relative permeability as functions of medium's saturation, are obtained through microscale modeling. At microscales, a 3-D model based on fiber diameter, fiber orientation, and medium's solid volume fraction (SVF), is generated to resemble the internal structure of the fibrous sheets and be used in full-morphology analysis as well as microscale permeability simulation. A mass convection boundary condition is considered here to model the fluid transport at the boundary in contact with the target surface. It was shown that the mass convection coefficient, kfkf, plays a significant role in determining the release rate and is expected to be in the range of 10-6
Journal: Chemical Engineering Science - Volume 64, Issue 9, 1 May 2009, Pages 2067–2075