کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
158250 457001 2008 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Second-order statistical regression and conditioning of replicate transient kinetic data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Second-order statistical regression and conditioning of replicate transient kinetic data
چکیده انگلیسی

A new method has been developed to estimate physico-chemical parameters from transient kinetic data: second-order statistical regression (SOSR). It allows to account for heteroskedasticity and nonwhiteness of the noise in the time series measured. SOSR makes use of replicates to estimate the second-order statistics, i.e. the autocovariance pattern of the noise. A sample principal noise component analysis of the experimental time series allows nonlinear least-squares (NLSQ) regression of the latter. The method has been validated by regression of artificially generated experimental data and the results have been compared with those obtained with direct NLSQ regression. The SOSR has also been applied to the irreversible adsorption of oxygen on a reduced vanadia/silica catalyst and the interaction of propane with a copper/ceria catalyst, as studied with a temporal analysis of products (TAP) setup. In general, compared with those obtained with direct NLSQ regression, the parameter estimates and their confidence intervals are more accurate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Science - Volume 63, Issue 7, April 2008, Pages 1850–1865
نویسندگان
, , , ,