کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
159271 457031 2005 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling and scale-up simulation of U-tube ozone oxidation reactor for treating drinking water
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Modeling and scale-up simulation of U-tube ozone oxidation reactor for treating drinking water
چکیده انگلیسی

In the present study, we developed a novel simulation model of the U-tube reactor for treating drinking water, which is composed of a coaxial inner tube serving as an efficient concurrent down-flow ozone dissolver and an outer column carrying out reactions between ozone and organic substances including odorous materials (2-methylisoborneol: 2-MIB) dissolved in the raw water. We assume that the U-tube is composed of a plug flow section (inner tube) followed by a tanks-in-series section (outer bubble column) and take into account the effect of the hydrostatic pressurization on the flow and absorption equilibrium for the gaseous components including ozone and other inactive species in developing the mass balance models. An algorithm is constructed of the differential multiple mass balance equations for the inner tube sections and multiple difference mass balance equations in the series tanks in the outer column section to enable the scale-up from a pilot plant to a full-scale plant. The gas holdup and gas–liquid mass transfer coefficient were measured in a model reactor and correlated for the use of the simulation calculation. Available literature data and correlations on the rates of reactions between ozone and organic substances including odorous material 2-MIB, gas–liquid equilibrium for active and inactive gases and axial fluid mixing properties are also incorporated in the simulation calculation. The simulation results well explained the available data of the ozone absorption efficiency and the removal efficiency of the odorous material in a pilot U-tube reactor. The simulation procedure was also successfully extended to verify the performance of a full-scale U-tube reactor. It is shown that the ozone absorption is practically a single function of the gas/liquid ratio while the removal efficiency of the odorous material is a single function of the ozone dose for a specified U-tube configuration.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Science - Volume 60, Issue 22, November 2005, Pages 6360–6370
نویسندگان
, , , , ,