کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
159601 457041 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fast Monte Carlo methodology for multivariate particulate systems-II: ττ-PEMC
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Fast Monte Carlo methodology for multivariate particulate systems-II: ττ-PEMC
چکیده انگلیسی

The point ensemble Monte Carlo (PEMC) was introduced [Irizarry, R., 2007. Fast Monte Carlo methodology for multivariate particulate systems-I: point ensemble Monte Carlo. Chemical Engineering Science, in press, doi:10.1016/j.ces.2007.09.007.] as a method to accelerate the simulation speed of particulate processes solved by Monte Carlo methods. The PEMC method is a “constructed” jump Markov model that approximates the dynamics of the original particulate process without losing a detailed description of individual particles. The PEMC method is integrated using the stochastic simulation algorithm, which is exact in time. A natural extension of the PEMC algorithm is to consider a coarse-graining strategy for the time to further accelerate the MC simulation. In this work, the ττ-leap method is adapted to the PEMC. It is shown that when the ττ-parameter is selected properly, the ττ-PEMC can also give accurate results with faster computational speed than the PEMC method. Furthermore, similar to the PEMC, the dynamic of complex intra-particle phenomena can be represented accurately. Numerical experiments show that this algorithm can improve the computational load of the exact method by orders of magnitude without sacrificing computational accuracy. The methodology is useful especially in stochastic optimization applications where many function calls (simulations) are required.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Science - Volume 63, Issue 1, January 2008, Pages 111–121
نویسندگان
,