کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
167587 1423422 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Statistical Monitoring of Chemical Processes Based on Sensitive Kernel Principal Components
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Statistical Monitoring of Chemical Processes Based on Sensitive Kernel Principal Components
چکیده انگلیسی

The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error δSPE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation directly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Chemical Engineering - Volume 21, Issue 6, June 2013, Pages 633-643