کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
167733 1423426 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sparse Kernel Locality Preserving Projection and Its Application in Nonlinear Process Fault Detection
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Sparse Kernel Locality Preserving Projection and Its Application in Nonlinear Process Fault Detection
چکیده انگلیسی

Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance degradation for complicated nonlinear industrial processes. In this paper, an improved LPP method, referred to as sparse kernel locality preserving projection (SKLPP) is proposed for nonlinear process fault detection. Based on the LPP model, kernel trick is applied to construct nonlinear kernel model. Furthermore, for reducing the computational complexity of kernel model, feature samples selection technique is adopted to make the kernel LPP model sparse. Lastly, two monitoring statistics of SKLPP model are built to detect process faults. Simulations on a continuous stirred tank reactor (CSTR) system show that SKLPP is more effective than LPP in terms of fault detection performance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Chemical Engineering - Volume 21, Issue 2, February 2013, Pages 163-170