کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
167796 1423452 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of Pressure Drop of Slurry Flow in Pipeline by Hybrid Support Vector Regression and Genetic Algorithm Model
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Prediction of Pressure Drop of Slurry Flow in Pipeline by Hybrid Support Vector Regression and Genetic Algorithm Model
چکیده انگلیسی

This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the literature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Chemical Engineering - Volume 16, Issue 6, December 2008, Pages 841-848