کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
168195 1423465 2006 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Investigation of Dynamic Multivariate Chemical Process Monitoring1
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Investigation of Dynamic Multivariate Chemical Process Monitoring1
چکیده انگلیسی

Chemical process variables are always driven by random noise and disturbances. The closed-loop control yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross correlations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Chemical Engineering - Volume 14, Issue 5, October 2006, Pages 559-568