کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
168987 1423450 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improved Mixed Integer Optimization Approach for Data Rectification with Gross Error Candidates
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Improved Mixed Integer Optimization Approach for Data Rectification with Gross Error Candidates
چکیده انگلیسی

Mixed integer linear programming (MILP) approach for simultaneous gross error detection and data reconciliation has been proved as an efficient way to adjust process data with material, energy, and other balance constrains. But the efficiency will decrease significantly when this method is applied in a large-scale problem because there are too many binary variables involved. In this article, an improved method is proposed in order to generate gross error candidates with reliability factors before data rectification. Candidates are used in the MILP objective function to improve the efficiency and accuracy by reducing the number of binary variables and giving accurate weights for suspected gross errors candidates. Performance of this improved method is compared and discussed by applying the algorithm in a widely used industrial example.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Chemical Engineering - Volume 17, Issue 2, April 2009, Pages 226-231