کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1697027 | 1012031 | 2013 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Optimized processing power and trainability of neural network in numerical modeling of Al Matrix nano composites
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this research, an experimental study of reinforcing alumina nano-particles into the aluminum alloy matrix was implemented to verify the accuracy of modeling results obtained by feed forward neural networks. Artificial neural network combined with numerical technique were used to predict the various parameters of mechanical properties such as hardness, tensile and compressive yield stress, UTS and elongation percentage. Much experimentation were taken to discover a suitable number of hidden neurons, avoid detraction from the trainability and enable feed forward neural networks to solve more complex problems. The predictions were found to be consistent with experimental measurements.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Manufacturing Processes - Volume 15, Issue 4, October 2013, Pages 518–523
Journal: Journal of Manufacturing Processes - Volume 15, Issue 4, October 2013, Pages 518–523
نویسندگان
Ali Asghar Tofigh, Mohammad Reza Rahimipour, Mohsen Ostad Shabani, Mehdi Alizadeh, Fatemeh Heydari, Ali Mazahery, Mansour Razavi,