کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1697030 | 1012031 | 2013 | 7 صفحه PDF | دانلود رایگان |

• Introduction and development of metal-cored arc welding process is of recent origin.
• Influence of process variables, shielding gas composition, microinclusion content on toughness of welds was studied.
• Possible use of pure argon as shielding gas in metal-cored arc welding process.
In the present work, metal-cored arc welding process was used for joining of modified 9Cr-1Mo (P91) steel. Metal-cored arc welding process is characterized by high productivity, slag-free process, defect-free weldments that can be produced with ease, and good weldability. Toughness is essential in welds of P91 steel during hydro-testing of vessels. There is a minimum required toughness of 47 J for welds that has to be met as per the EN1557:1997 specification. In the present study, welds were completed using two kinds of shielding gases, each composition being 80% Argon + 20% CO2, and pure argon respectively. Microstructural characterization and toughness evaluation of welds were done in the as – weld, PWHT at 760 °C – 2 h and PWHT at 760 °C – 5 h conditions. The pure argon shielded welds (‘A2’ and ‘B2’) have higher toughness than 80% argon + 20% CO2 shielded welds (‘A1’ and ‘B1’). Pure argon shielded welds show less microinclusion content with low volume fraction of δ-ferrite (<2%) phase. Themo-calc windows (TCW) was used for the prediction of equilibrium critical transformation points for the composition of the welds studied. With increase in post-weld heat treatment (PWHT) duration from 2 h to 5 h, there was increase in toughness of welds above 47 J. Using metal-cored arc welding process, it was possible to achieve the required toughness of more than 47 J after PWHT at 760 °C – 2 h in P91 steel welds.
Journal: Journal of Manufacturing Processes - Volume 15, Issue 4, October 2013, Pages 542–548