کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1697201 1012042 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mechanical and microstructural properties prediction by artificial neural networks in FSW processes of dual phase titanium alloys
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله
Mechanical and microstructural properties prediction by artificial neural networks in FSW processes of dual phase titanium alloys
چکیده انگلیسی

Friction Stir Welding (FSW), as a solid state welding process, seems to be one of the most promising techniques for joining titanium alloys avoiding a large number of difficulties arising from the use of traditional fusion welding processes. In order to pursue cost savings and a time efficient design, the development of numerical simulations of the process can represent a valid choice for engineers. In the paper an artificial neural network was properly trained and linked to an existing 3D FEM model for the FSW of Ti–6Al–4V titanium alloy, with the aim to predict both the microhardness values and the microstructure of the welded butt joints at the varying of the main process parameters. A good agreement was found between experimental values and calculated results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Manufacturing Processes - Volume 14, Issue 3, August 2012, Pages 289–296
نویسندگان
, , ,