کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1707659 1519464 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A RTk−Pk approximation for linear elasticity yielding a broken H(div) convergent postprocessed stress
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
A RTk−Pk approximation for linear elasticity yielding a broken H(div) convergent postprocessed stress
چکیده انگلیسی

We present a non-standard mixed finite element method for the linear elasticity problem in Rn with non-homogeneous Dirichlet boundary conditions. More precisely, our approach is based on a simplified interpretation of the pseudostress–displacement formulation originally proposed in Arnold and Falk (1988), which does not require symmetric tensor spaces in the finite element discretization. We apply the classical Babuška–Brezzi theory to prove that the corresponding continuous and discrete schemes are well-posed. In particular, Raviart–Thomas spaces of order k≥0k≥0 for the pseudostress and piecewise polynomials of degree ≤k≤k for the displacement can be utilized. In addition, complementing the results in the aforementioned reference, we introduce a new postprocessing formula for the stress recovering the optimally convergent approximation of the broken H(div)-norm. Numerical results confirm our theoretical findings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics Letters - Volume 49, November 2015, Pages 133–140
نویسندگان
, , ,