کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1708694 1012829 2012 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Wiener polarity index of fullerenes and hexagonal systems
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Wiener polarity index of fullerenes and hexagonal systems
چکیده انگلیسی

The Wiener polarity index Wp(G)Wp(G) of a molecular graph GG of order nn is the number of unordered pairs of vertices uu, vv of GG such that the distance dG(u,v)dG(u,v) between uu and vv is 3. In this note, it is proved that in a triangle- and quadrangle-free connected graph GG with the property that the cycles of GG have at most one common edge, Wp(G)=M2(G)−M1(G)−5Np−3Nh+|E(G)|Wp(G)=M2(G)−M1(G)−5Np−3Nh+|E(G)|, where M1(G)M1(G), M2(G)M2(G), NpNp and NhNh denoted the first Zagreb index, the second Zagreb index, the number of pentagons and the number of hexagons, respectively. As a special case, it is proved that the Wiener polarity index of fullerenes with nn carbon atoms is (9n−60)/2(9n−60)/2. The extremal values of catacondensed hexagonal systems, hexagonal cacti and polyphenylene chains with respect to the Wiener polarity index are also computed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics Letters - Volume 25, Issue 10, October 2012, Pages 1510–1513
نویسندگان
, , ,