کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1709144 1012843 2008 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The dynamics of holomorphic germs near a curve of fixed points
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
The dynamics of holomorphic germs near a curve of fixed points
چکیده انگلیسی

One of the interesting areas in the study of the local dynamics in several complex variables is the dynamics near the origin OO of maps tangent to the identity, that is of germs of holomorphic self-maps f:n→n such that f(O)=Of(O)=O and dfO=id. When n=1n=1 the dynamics is described by the known Leau–Fatou flower theorem but when n>1n>1, we are still far from understanding the complete picture, even though very important results have been obtained in recent years (see, e.g., [2], [7], [10] and [19]). In this note we want to investigate conditions ensuring the existence of parabolic curves (the two-variable analogue of the petals in the Leau–Fatou flower theorem) for maps tangent to the identity in dimension 2. Using simple examples, we prove that these conditions are not, generally, sufficient.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics Letters - Volume 21, Issue 12, December 2008, Pages 1229–1233
نویسندگان
,