کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1713156 | 1013216 | 2007 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Data processing of small samples based on grey distance information approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is dificult and complex to determine the probability distribution of small samples, it is dificult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The deffnitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the difierent samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Systems Engineering and Electronics - Volume 18, Issue 2, 2007, Pages 281-289
Journal: Journal of Systems Engineering and Electronics - Volume 18, Issue 2, 2007, Pages 281-289
نویسندگان
Ke Hongfa, Chen Yongguang, Liu Yi,